Universidade Estadual de Maringá

Centro de Ciências Exatas

Departamento de Física

Material Didático para Física Experimental IV

NOÇÕES BÁSICAS PARA A UTILIZAÇÃO DO OSCILOSCÓPIO DIGITAL

Tektronix TBS 1022

Autores:

Alice Sizuko Iramina

Antonio Medina Neto

Francielle Sato

Wilson Ricardo Weinand

Maringá, outubro de 2015.

Sumário

1. M	ONITORANDO O SINAL DE UM CIRCUITO RESISTIVO EM CA	2
1.1.	Verificação de operação do osciloscópio	3
1.2.	Descrição das funções gerais do gerador de funções Politerm POL-40	5
1.3.	Monitorando o sinal	6
1.4.	Utilização de cursores	7
1.5.	UTILIZANDO A FUNÇÃO MEDIDAS E ESCALA AUTOMÁTICA:	9
1.6.	Medidas simultâneas com os dois canais do osciloscópio	11
2. AP	LICAÇÃO DAS FUNÇÕES BÁSICAS DO OSCILOSCÓPIO PARA A CARACTERIZAÇÃO DE CIRCUITOS	12
2.1.	Determinação da constante de tempo num circuito RC em série	
2.2.	Medidas da diferença de fase	
3. RE	FERÊNCIAS BIBLIOGRÁFICAS	

1. Monitorando o sinal de um circuito resistivo em CA

Figura 1: (Superior) Painel frontal [1] e (inferior) parte traseira do osciloscópio digital Tektronix TBS 1022 [2].

Figura 2: Ponta de prova.

1.1.Verificação de operação do osciloscópio

Este procedimento deve ser realizado de modo manual ou automático antes da utilização do osciloscópio digital a fim de verificar a correta operação do equipamento. Primeiramente será descrito o procedimento para o modo manual.

Procedimento manual:

1-Ligar o osciloscópio no botão indicado na Fig. 1(1);

2-Conectar a ponta de prova (Fig.2) com lado do conector BNC ao canal 1 (Fig. 1(2)) e a outra extremidade ao PROBE COMP (Fig. 1(3)). Conecte o conector BNC ao osciloscópio antes de conectá-la ao PROBE COMP. Conecte o terminal de referência da ponta de prova antes de conectar a entrada da ponta de prova. Desconecte a entrada da ponta de prova e seu fio de referência da ponta antes de desconectar o conector BNC do osciloscópio. A ponta de prova para este osciloscópio tem uma atenuação de 10x. Em caso da utilização de uma ponta de prova com seleção de ganho, selecionar a atenuação de 10x;

3-Ajuste a escala da base tensão para 2V por divisão (Fig. 1 (7)) e base tempo para 500µs por divisão (Fig. 1 (8));

4-Encontre uma onda quadrada com período de 1ms (f = 1kHz) e uma tensão pico a pico (V_{pp}) de 5V, para isto é necessário o ajuste do nível de *trigger* (Fig.1(5)). Caso tenha obtido sucesso neste procedimento deverá obter um sinal conforme ilustra a Fig. 3.

5-Para ajustar o nível de *trigger* pressione TRIG MENU (Fig. 1(4)) e ajuste: "tipo" – borda; "origem" – CH1; "inclinação" – subida; "modo" – auto; "acoplamento" – CA, e ajuste o botão do *trigger* (Fig. 1- (5))

até obter um único sinal. Caso o nível de *trigger* não esteja ajustado corretamente o sinal na tela do osciloscópio ficará instável, tal como ilustra a Fig. 4.

Figura 3: Sinal de uma onda quadrada com período de 1ms e V_pp de ~5V.

Tek	"nu	R Auto	M Pos: 0.000s	TRIGGER	
				Tipo	6
					-
	TIT			CH1	- (
1				Inclinação	
					-(
				Modo Auto	-
				Acoplam.	C
CH1 20	NOV	M 25	Ous CH1 Z		6

Figura 4: Sinal no osciloscópio com o nível de trigger desajustado.

Na Fig. 3, a marcação (I) mostra a seta à esquerda na tela que indica o zero do sinal do canal utilizado, a marcação (II) mostra a seta à direita na tela que indica o nível de *trigger* e a marcação (II) mostra a seta no topo da tela que indica o início do sinal com relação à posição vertical (base tempo). O cruzamento das retas que contém as setas (II) e (III) indicam o ponto inicial do sinal.

Procedimento automático:

1-Repita os passo de 1 e 2 do procedimento manual;

2-Pressione DEFAULT SETUP (conf. padrão) e em seguida pressione AUTOSET, devem aparecer na parte inferior da tela (Fig. 3) as informações: CH1; pico a pico ~5V; período 1ms; médio ~2,5V e de freqüência 1kHz;

Após este procedimento o osciloscópio está pronto para ser utilizado.

O procedimento manual ou automático para verificação de funcionamento do osciloscópio também pode ser realizado para o canal 2, neste caso é necessário que esteja conectado somente a ponta de prova no canal 2.

1.2. Descrição das funções gerais do gerador de funções Politerm POL-40

Figura 5: Gerador de funções Politerm POL-40.

O cabo da tensão de saída do gerador deve ser conectado em "OUT" (Fig.5(1)). A amplitude da onda gerada pelo equipamento é regulada no botão "AADJ" (Fig.5(6)) e o *display*, mostrado na Fig.5(4), indica o valor da tensão pico a pico (V_{pp}), entretanto este valor deve ser monitorado pelo osciloscópio, pois para diferentes intervalos de frequência à tensão não é mantida. Os LED´s, na Fig.5(14) indicam a ordem de grandeza mV ou V da tensão V_{pp} .

O botão "FADJ" (Fig.5(6)) regula a freqüência e o *display*, mostrado na Fig.5(3), indica o valor da frequência e os LED's, Fig.5(13), indicam sua ordem de grandeza Hz e kHz. O intervalo de frequência é selecionado no botão "RANGE" (Fig.5(10)) que varia de 1 – 7, este intervalo é indicado a direita no *display* (Fig.5(3)), sendo 1) 0,5 – 3,0 Hz; 2) 1 – 30 Hz; 3) 10 – 280 Hz; 4) 120 – 2700 Hz; 5) 1 – 26 kHz; 6)

10 – 235 kHz e 7) 115 – 2500 kHz. Os valores podem variam de acordo com o equipamento. Após selecionar o intervalo de frequência desejado é necessário apertar "RUN" (Fig.5 (11)).

A forma da onda é selecionada no botão "WAVE", Fig.5(9), sendo indicada à esquerda do *display*, mostrado na Fig.5(3), e a forma é indicada pelos números 1, 2 e 3: senoidal, quadrada e triangular, respectivamente. Após selecionar a forma de onda desejada é necessário apertar "RUN" (Fig.5 (11)).

O botão indicado na Fig.5(2) "DADJ" ajusta o ciclo de atividade do sinal de saída (variando de 20 a 80%), para maior precisão selecione a forma de onda triangular no gerador de função, e monitore sua simetria pelo osciloscópio. O ajuste deve ser realizado até que se obtenha uma onda simétrica.

1.3.Monitorando o sinal

- Objetivo: Monitorar o sinal verificando amplitude e frequência para uma onda senoidal num circuito resistivo em CA.
- Procedimento:

1- Monte o circuito com um resistor e o gerador de função, e conecte o canal 1 do osciloscópio ao circuito como mostra a Fig.6;

Figura 6: Circuito resistivo em CA. O símbolo estrela indica o cabo de saída do gerador de função e símbolo círculo indica a ponta de prova conectada ao canal 1 do osciloscópio.

2- Selecione a forma de onda senoidal no gerador de função (veja item 1.2);

3-Selecione o canal 1 (Fig. 1(6)), aparecerá uma tela (Fig. 7) na qual as seguintes configurações devem ser ajustadas: "Acoplamento" – CA; "limite LB" – desligado; "ganho variável" – grosso ou fino; "sonda" - 10x voltagem e "inverter" – desligado;

Figura 7: Tela do osciloscópio para configuração de medida manual no canal 1.

4-Ajuste a frequência de 5kHz no gerador de função;

5-Ajuste o nível de trigger até obter um sinal estável;

6-Ajuste as bases de tensão e tempo, vertical e horizontal, respectivamente, para a taxa de varredura mais adequada em volts/divisão (vertical) e segundos/divisão (horizontal);

7- Ajuste a posição do sinal com relação às posições vertical e horizontal (Fig.1(9) e Fig.1(10)) até centralizá-lo na tela do osciloscópio;

Caso a onda senoidal apareça assimétrica realize o ajuste de sua simetria utilizando o botão "DADJ" conforme descrito na página 6;

8-Repita este procedimento para as outras frequências e preencha a Tabela 1.

•	1		
Frequência (Hz)	Período (T) (s)	1/T (s ⁻¹)	V_{pp} (V)
10			
100			
1000			
10000			

Tabela 1: Dados experimentais obtidos para	o circuito resistivo em CA pa	ara diferentes frequências
--	-------------------------------	----------------------------

1.4.Utilização de cursores

- Objetivo: Utilizar os cursores do osciloscópio para medidas de período e V_{pp} de uma onda.
- Procedimento:

1-Monte o circuito com um resistor e o gerador de função, e conecte o canal 1 do osciloscópio ao circuito como mostra a Fig.6;

2-Selecione a forma de onda senoidal no gerador de função (veja item 1.2) e ajuste na freqüência de_____;

3-Ajuste a saída do gerador de função para V_{pp} de ______ utilizando o osciloscópio;

4-Ajuste o nível de *trigger* tendo como origem o canal 1;

5-Selecione a função "cursores" (Fig.1(11)). Nesta função é possível realizar medidas de tempo e tensão com relação à posição dos cursores (vertical e horizontal), bem como, a variação entre eles. Na tela do osciloscópio (Fig. 8) aparecerão as seguintes configurações que devem ser ajustas: "tipo" – amplitude e "origem" – CH1.

Figura 8: Ajuste dos cursores para medida de amplitude.

6-Selecione o "cursor 1", e com o botão indicado na Fig. 1(12), ajuste o cursor na posição de máxima intensidade da onda;

7-Selecione o "cursor 2", e com o botão indicado na Fig. 1(12), ajuste o cursor na posição de mínima intensidade da onda;

8-Anote os valores de ΔV = _____, V cursor 1 = _____ e V cursor 2 = ____;

9-Ainda na função "cursores" selecione a opção "tipo"- tempo e mantenha a mesma origem no canal 1 (Fig. 9);

Figura 9: Ajuste dos cursores para medida de tempo.

10-Selecione com o cursor 1 e 2 um período da onda, e anote os valores fornecido pelo osciloscópio: $\Delta t =$ ______, $1/_{\Delta t} =$ ______, $\Delta V =$ ______, $t_{cursor1} =$ ______, $t_{cursor2} =$ ______, $V_{cursor1} =$ ______, $V_{cursor1} =$ ______, $V_{cursor2} =$ ______. 11-Após as medidas selecione "tipo" – desligado;

1.5.Utilizando a função medidas e escala automática:

- Objetivo: Ajuste de escala e medidas no modo automático.
- Procedimento:

1-Mantenha as mesmas configurações realizadas no procedimento de 1 até 4 do item 1.4.;

2-Selecione a função "escala automática" (Fig.1(13)), neste menu selecione "autoranging" – ligado e selecione "vertical e horizontal". Nesta função o osciloscópio ajusta as melhores escalas para tensão e tempo, e ainda ajusta o de nível de *trigger* e o zero da base temporal (posição horizontal) automaticamente, baseado em um algoritmo desenvolvido pelo fabricante, otimizando a visualização do sinal a ser monitorado. Caso seja feito um ajuste manual esta função é desabilitada automaticamente; 3-Selecione a função "medidas" (Fig. 1(14)), e na tela aparecerão cinco opções que podem ser ajustadas (Fig.10);

Figura 10: Utilização da função medida no osciloscópio.

4-Selecione a primeira opção, e na nova tela configure "origem" – CH1 e "tipo" – frequência e aperte "voltar";

5-Selecione a segunda opção e configure "origem" – CH1 e "tipo" – período e aperte "voltar";

6-Selecione a terceira opção e configure "origem" - CH1 e "tipo" - pico a pico e aperte "voltar";

Após os procedimentos de 4-6 realizados com sucesso a configuração da tela de "medidas" aparecerá tal como ilustra a Fig. 11, e as medidas podem ser obtidas diretamente desta tela. As demais opções podem ser selecionadas de acordo com o que se deseja medir;

Figura 11: Configuração da função medida.

1.6.Medidas simultâneas com os dois canais do osciloscópio

- Objetivo: Utilizar os dois canais do osciloscópio para monitorar sinais em um circuito divisor de tensão.
- Procedimento:

1-Monte o circuito como ilustrado na Fig.12 com $R_x = 2,2k\Omega$, lembre-se de respeitar as polaridades das pontas de provas com as do gerador de função;

2-No gerador de função, ajuste a frequência para 1kHz e selecione a forma da onda como senoidal com uma $V_{ppTotal}$ de 10V, utilize o osciloscópio para ajustar a $V_{ppTotal}$;

3-Ative os canais 1 e 2 do osciloscópio Fig. 1 (6) e Fig. 1(16), respectivamente;

4-Selecione a função "escala automática" e ajuste "*autoranging*" - ligado, nesta função o nível de *trigger* deve estar com a origem no canal 1. A Fig. 13 ilustra a tela que deverá aparecer no osciloscópio;

5-Selecione a função "medida" e ajuste as duas primeiras opções, sendo a "origem" – CH1, para "tipo" frequência e pico a pico, selecione a terceira opção deste *menu* e configure "origem"- CH2 e "tipo" – pico a pico;

6-Anote da tensão pico a pico do canal 2 (V_{Ch2}) na Tabela 2 e compare com o valor de V_x calculado utilizando a relação:

$$I = \frac{V_{ppTotal}}{R+R_{\chi}}; \qquad V_{\chi} = R_{\chi}I = \left(\frac{R_{\chi}}{R+R_{\chi}}\right)V_{ppTotal} = \left(\frac{1}{1+R/R_{\chi}}\right)V_{ppTotal}$$
(1)

Figura 12: Circuito divisor de tensão. O osciloscópio está representado pelos canais Ch1 e Ch2, o canal Ch1 monitora a $V_{ppTotal}$ do circuito, enquanto que o Ch2 somente a tensão sobre o resistor R_x . R é o resistor fixo no circuito ($R = 2,2 \text{ k}\Omega$) e os valores para R_x estão na Tabela 2. A $V_{ppTotal}$ é mantida constante independente do resistor R_x .

Figura 13: Sinal dos dois canais simultaneamente na tela do osciloscópio. O canal 1 está indicado pela estrela e o canal 2 pelo círculo.

7-Substitua os demais resistores R_x 's que constam na Tabela 2 e preencha os demais dados da tabela.

Tabela 2: Valores das tensões pico a pico sobre o resistor R_x , sendo V_x o valor calculado e V_{Ch2} o valor medido.

R_{χ} (k Ω)	V_{χ} (V)	V_{Ch2} (V)			
2,2					
0,1					
10,0					
<i>f</i> = 1 kHz					
$V_{ppTotal} = 10 \text{ V}$					

2. Aplicação das funções básicas do osciloscópio para a caracterização de circuitos

- 2.1.Determinação da constante de tempo num circuito RC em série
- Considerações gerais:

Durante o processo da descarga, a tensão em um capacitor num circuito RC-série é dado por:

$$V_C = V_0 e^{-t/\tau} \tag{2}$$

na qual $\tau = RC$.

Para $t_1 = 0 \implies V_1 = V_0$ e para $t_2 = \tau \implies V_2 = V_0/e$. Assim a diferença de tensão é dada por:

$$\Delta V = V_1 - V_2 = V_0 \left(1 - \frac{1}{e} \right) = 0.63 V_0.$$
⁽³⁾

- Objetivo: Uso de cursores para a determinação da constante de tempo (τ) para o circuito RCsérie com onda quadrada.
- Procedimento:

1-Monte o circuito como ilustrado na Fig.14, lembre-se de respeitar as polaridades das pontas de provas com as do gerador de função;

2- Ative os canais 1 e 2 do osciloscópio Fig. 1 – (6) e (16) respectivamente;

3-No gerador de função ajuste uma frequência de 500Hz e selecione a forma da onda como quadrada com uma $V_{ppTotal}$ = 10V, utilize o osciloscópio para ajustá-la acionando a função "medida" sendo a "origem" canal 2 e "tipo" – pico a pico. Caso necessário ajuste o ciclo de atividade de sinal de saída "DADJ", conforme descrito na página 6.

Figura 14: Circuito RC-série. O osciloscópio está representado pelos canais 1 e 2, o canal 2 monitora a $V_{ppTotal}$ do circuito, enquanto que o canal 1 monitora a V_C . Os símbolos estrela indicam o canal 1 e os círculos canal 2. Sendo $R = 10k\Omega$, $C = 0,01\mu$ F, f = 500Hz e $V_{ppTotal} = 10$ V.

4-Selecione a função ESCALA AUTOMÁTICA e ajuste "autoranging" – ligado;

5-Selecione a função TRIG MENU e ajuste a "origem" - canal 2 e "inclinação" - descida, a Fig.14 ilustra os sinais que deverão aparecer na tela do osciloscópio;

6-Selecione a função "cursores" (Fig. 1(11)) e ajuste "tipo" – tempo e "origem" – CH1 e posicione o cursor 1 na posição t ~ 0s e movimente o cursor 2 até a posição na qual o valor de ΔV indique 63% de $V_{ppTotal}$. Veja a Fig. 15.

Figura 15: Sinais para o circuito RC-série – descarga no capacitor.

O valor do Δt , que corresponde a 0,63 $V_{ppTotal}$, é o τ experimental do circuito RC-série. Anote este valor e compare com o valor calculado. Preencha a Tabela 3 para os demais circuitos com a mesma freqüência.

Tabela 3. Valores das constantes de tempo obtidas para u circuito RC-série.

$C_{eq}(nF)$	$R_{eq}(k\Omega)$	$ au_{experimental}(\mu s)$	$ au_{calculado}(\mu s)$	Desvio percentual
10	10			
20	10			
10	5			

2.2.Medidas da diferença de fase

Considerações gerais:

A figura 16 mostra dois sinais senoidais com uma diferença e fase φ , que podem ser descritos como:

$$V_1 = V_{01}sen(\omega t) \qquad \qquad V_2 = V_{02}sen(\omega t - \varphi) \tag{4}$$

A diferença de fase pode ser facilmente calculada por:

$$T \rightarrow 360^{\circ}$$

 $\Delta t \rightarrow \varphi$

Portanto:

$$\varphi = (360^{\circ}/T)\Delta t = (360^{\circ}f)\Delta t$$
⁽⁵⁾

(-)

Figura 16: Representação de dois sinais senoidais com uma diferença de fase φ .

Objetivo:

Determinar a diferença de fase num circuito RC-série.

Procedimento:

1-Monte o circuito como ilustrado na Fig.17, lembre-se de respeitar as polaridades das pontas de provas com as do gerador de função;

2-No gerador de função, ajuste a freqüência f = 150kHz e selecione a forma da onda senoidal com $V_{ppTotal}$ = 10V, utilize o osciloscópio para ajustá-la;

3-Selecione o TRIG MENU o qual deve estar com a "origem"- canal 2 e "inclinação" - subida;

4- Ajuste o zero da escala vertical dos dois canais para o centro da tela, a marcação na Fig.18 indica o ajuste da escala vertical;

5-Selecione a função AQUISIÇÃO (Fig.1(19)), ajuste para 16 médias e selecione "médias";

6-Selecione a função "cursores" (Fig. 1(11)), ajuste "tipo" – tempo e "origem" – CH1 e posicione o cursor 1, tal que a tensão seja aproximadamente OV;

7- Selecione "origem"- CH2 e movimente o cursor 2 até posição adjacente ao primeiro cursor, tal que a tensão seja aproximadamente OV. Veja a Fig. 18. Não movimente o cursor 1 após ter selecionado a origem como CH2;

8- Meça o valor de Δt e determine a diferença de fase φ_{cursor} . Anote estes valores na Tabela 4;

9-Repita o procedimento para o outro circuito e anote os valores na Tabela 4;

Figura 17: Circuito RC-série. O osciloscópio está representado pelos canais 1 e 2, o canal 2 monitora a $V_{ppTotal}$ do circuito, enquanto que o canal 1 monitora a V_R . Os símbolos estrela indicam o canal 1 e o círculo canal 2. Sendo $R = 100\Omega$, $C = 0,01\mu$ F, f = 150kHz e $V_{ppTotal} = 10$ V.

A medida da diferença de fase também pode ser feita automaticamente utilizando o seguinte procedimento:

10- Selecione a função ESCALA AUTOMÁTICA e ajuste "autoranging" – ligado;

11- Selecione a função MEDIDA e ajuste a "origem" – CH1, "tipo"- fase e "origem2"- CH2. Selecione voltar e verifique o valor da diferença de fase;

12- Anote o valor da fase em $\varphi_{automático}$ na Tabela 4, e repita o procedimento para o outro circuito, também anotando o valor na Tabela 4.

	,			
$R_{eq}(\Omega)$	C(nF)	$\Delta t (ns)$	$\varphi_{cursor}(^{\circ})$	$arphi_{autom ilde{a}tico}(^{\circ})$
100	10			
50	10			

Tabela 4. Medidas da diferença de fase num circuito RC-série.

Figura 18: Sinais defasados dos dois canais na tela do osciloscópio.

3. Referências bibliográficas

- [1] <u>http://www.tek.com/</u> acessado em 05 de outubro de 2015.
- [2] Manual do Usuário do osciloscópio Séries TDS1000B e TDS2000B Tektronix.
- [3] <u>http://www.del.ufms.br/tutoriais/oscilosc/oscilosc.htm</u> acessado em 25 de julho de 2014.