Plano de Ensino – Polo 20 (UEM)

Nome da disciplina: Mecânica Quântica

Carga horária: 60h (4 créditos)

Obrigatória? Sin

Professor: Breno Ferraz de Oliveira **Local:** Sala 21 – Bloco G56/DFI-UEM

Ementa: Fundamentos conceituais e formais da Mecânica Quântica. Princípio da superposição. Estados e observáveis. Medição. Sistemas com variáveis bivalentes. Emaranhamento, decoerência e informação quântica. Aplicações.

Objetivos: Apresentar a Mecânica Quântica por meio da análise de alguns fenômenos não elucidados pela Mecânica Clássica. Tratar de algumas aplicações da Mecânica Quântica. Introduzir o formalismo matemático necessário à compreensão da Mecânica Quântica.

Metodologia de ensino: Aulas expositivas com discussão sobre os assuntos abordados. Resolução e discussão de problemas.

Critério de Avaliação: Prova escrita com peso de 70% e resolução de listas de exercícios com peso de 30%.

Cronograma:

Assunto	СН
Radiação térmica de corpo negro	4h
Propriedades corpusculares da radiação	4h
Propriedades ondulatórias das partículas e o princípio da incerteza	4h
Modelos atômicos clássicos e quânticos	8h
Equação de Schrödinger	2h
Aplicações da equaçãode Schrödinger	14h
O experimento de Stern-Gerlach	4h
Momento angular total – a interação spin-órbita	4h
Emaranhamento, decoerência e informação quântica	4h
Mecânica quântica relativística	8h
Avaliações	4h

Bibliografia:

- [1] R. Eisberg, R. Resnick, *Física Quântia*, Rio de Janeiro, Campus/Elsevier, 21^a reimpressão, 1979.
- [2] F. Caruso, V. Oguri, *Física Moderna*, Rio de Janeiro, Campus/Elsevier, 2^a reimpressão, 2006.
- [3] D. J. Griffiths, *Introduction to Quantum Mechanics*, Pearson Prentice Hall, 2nd edition, 2004.
- [4] M. H. Nussenveig, Curso de Física Básica, vol. 4, São Paulo, Edgard Blücher, 1998.

Bibliografia de Consulta:

- [1] M. S. Hussein, S. R. A. Salinas, 100 Anos de Física Quântica, São Paulo, Ed. Livraria da Física, 2001.
- [2] J. S. Bell, Speakeable and Unspeakable in Quantum Mechanics, Cambridge University Press, 1993.
- [3] I. Greca, V. E. Herscovitz, *Introdução à Mecânica Quântica: Notas de curso*, Instituto de Física/UFRGS, Porto Alegre, 2002 (Textos de Apoio ao Professor de Física n.13).
- [4] P. G. Hewitt, Conceptual Physics, Addison-Wesley, 1992.